Introduction to Deep Learning for Facial and Gesture Understanding

Part I: Introduction

Raymond Ptucha, www.nvidia.com/dli Rochester Institute of Technology, USA

Tutorial-2 May 14, 2019, 2-6pm

NVIDIA DLI Account

- Congratulations on registering for the F&G'19 Tutoral-2: "Introduction to Deep Learning for Facial and Gesture Understanding".
- Navigate to:
- · courses.nvidia.com/dli-event
 - · Browser Recommendation: Chrome
- Event code:

FG19_CV2.0_AMBASSADOR_MAY19

R. Ptucha '19

· Create an Account

Fair Use Agreement

This agreement covers the use of all slides in this document, please read carefully.

- You may freely use these slides, if:
 - You send me an email telling me the conference/venue/company name in advance, and which slides you wish to use.
 - You receive a positive confirmation email back from me.
 - My name (R. Ptucha) appears on each slide you use.
- (c) Raymond Ptucha, rwpeec@rit.edu

R. Ptucha '19

4

Agenda

- Part I: Introduction
- Part II: Convolutional Neural Nets
- · Part III: Fully Convolutional Nets
- Break
- Part IV: Facial Understanding
- Part V: Recurrent Neural Nets
- · Hands-on with NVIDIA DIGITS

R. Ptucha '19

Machine Learning

- Machine learning is giving computers the ability to analyze, generalize, think/reason/behave like humans.
- Machine learning is transforming medical research, financial markets, international security, and generally making humans more efficient and improving quality of life.
- Inspired by the mammalian brain, deep learning is machine learning on steroids- bigger, faster, better!

R. Ptucha '19

7

Unleashing of Intelligence

- Machines will slowly match, then quickly surpass human capabilities.
- Today it is exciting/scary/fun to drive next to an autonomous car.

Tomorrow it may be considered irresponsible for a human to relinquish control from a car that has faster reaction times, doesn't drink/text/get distracted/tired, and is communicating with surrounding vehicles and objects.

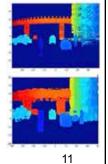
R. Ptucha '19

- · U.S. car fatality is about 1.16 deaths per 100M miles1.
- · Current driverless technology requires human intervention

Sample Autonomous Montage from YouTube

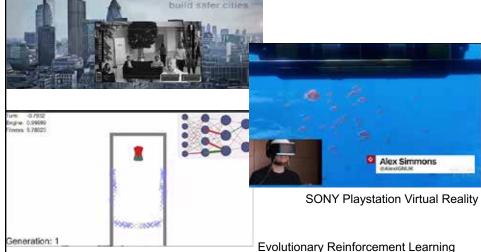
every few dozen to few thousand miles.

- Investing billions of \$\$ to close the gap:
 - 1. Redundancy (vision, LiDAR, RADAR)
 - 2. Smarter decision making: usefulness vs. safety, i.e. can be safe going very slow, but will take too long to arrive at destination!

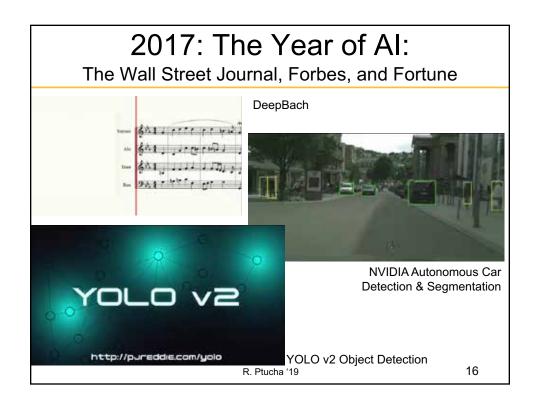


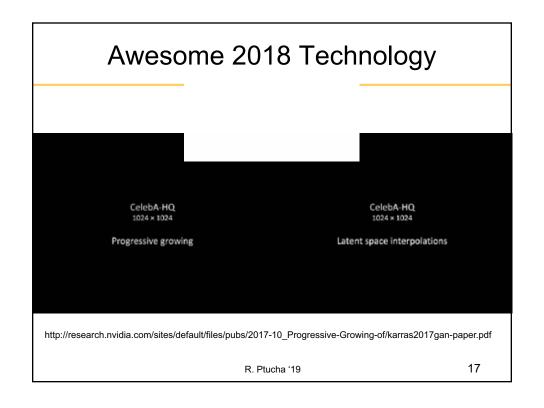
R. Ptucha '19

2017: The Year of AI: The Wall Street Journal, Forbes, and Fortune Working together to **NEC Face Recognition**



R. Ptucha '19





Awesome 2018 Technology

NVIDIA Drive

R. Ptucha '19

18

Awesome 2018 Technology

Email smart compose sentence completion

https://ai.googleblog.com/2018/05/smart-compose-using-neural-networks-to.html?m=1

R. Ptucha '19

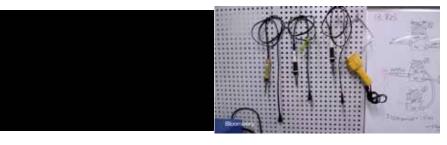
Awesome 2018 Technology

Goggle Duplex: https://www.youtube.com/watch?v=D5VN56jQMWM R. Ptucha '19

Awesome 2018 Technology

Giving Bruno Mars Dance Moves to Anyone

Android Companions



Erica, from Hiroshi Ishiguro

R. Ptucha '19

2019 and Beyond

Closing the Gap between Man and Machine

Tesla AutoPilot, V2: https://www.youtube.com/watch?v=_1MHGUC_BzQ

R. Ptucha '19

22

The Human Brain

- We've learned more about the brain in the last 5 years than we have learned in the last 5000 years!
- It controls every aspect of our lives, but we still don't understand exactly how it works.

R. Ptucha '19

The Brain on Pattern Recognition

• Airplane, Cat, Car, Dog

http://thebraingeek.blogspot.com/ 2012/08/blindsight.html

STL-10 dataset

R. Ptucha '19

26

The Brain on Pattern Recognition

Despite Changes in Deformation:

R. Ptucha '19

The Brain on Pattern Recognition

Despite Changes in Occlusion:

R. Ptucha '19

28

The Brain on Pattern Recognition

Despite Changes in Size, Pose, Angle:

Tardar Sauce "Grumpy Cat"

R. Ptucha '19

The Brain on Pattern Recognition

Despite Changes in Background Clutter:

R. Ptucha '19

30

The Brain on Pattern Recognition

Despite Changes in Class Variation...

R. Ptucha '19

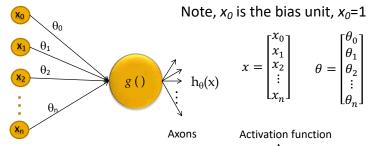
Neural Nets on Pattern Recognition

- Instead of trying to code simple intuitions/rules on what makes an airplane, car, cat, and dog...
- We feed neural networks a large number of training samples, and it will automatically learn the rules!
- · We will learn the magic behind this today!

R. Ptucha '19

34

Artificial Neuron

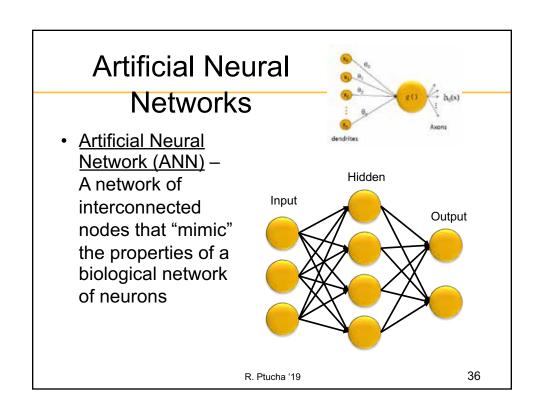


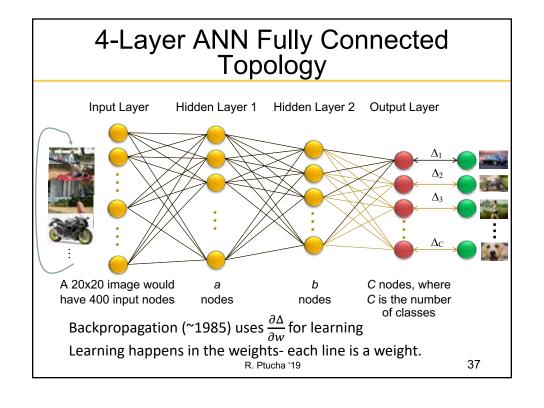
dendrites

$$h_{\theta}(x) = g(x_0\theta_0 + x_1\theta_1 + \dots + x_n\theta_n) = g\left(\sum_{i=0}^n x_i\theta_i\right)$$

$$h_{\theta}(x) = g(\theta^T x)$$

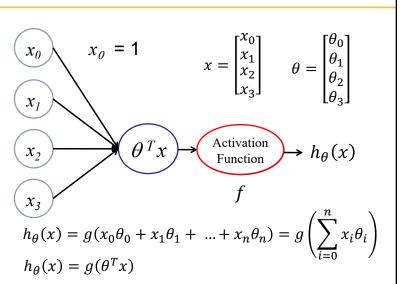
R. Ptucha '19





Neuron Model

Bias unit

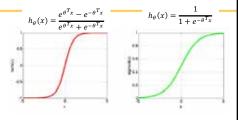


R. Ptucha '19

Activation Function Comparison

- Tanh
- Sigmoid

Gradient of both saturates at zero. Sigmoid also non-zero centered, so in practice tanh performs better.



- Rectified Linear Units (ReLU)
 - Better for high dynamic range
 - Faster learning
 - Overall better result
 - Neurons can "die" if allowed to grow unconstrained

ow 39

 $h_{\theta}(x) = max(0, x)$

R. Ptucha '19

Where Do Weights Come From?

- The weights in a neural network need to be learned such that the errors are minimized.
- Just like logistic regression, we can write a cost function.
- Similar to gradient descent, we can write an iterative procedure to update weights, with each iteration decreasing our cost.
- These iterative methods may be less efficient than a direct analytical solution, but are easier to generalize.

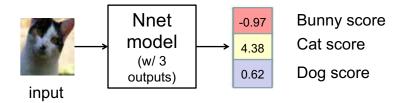
R. Ptucha '19 41

Backpropagation

- We need to solve weights of a network so that the error is minimized.
- Weights can be refined by changing each weight by an amount proportional to the partial derivative of the error with respect to each weight.
- Partial derivatives can be calculated by iteratively changing each weight and measuring the corresponding change in error.
- Hard to do with millions of weights!
- In 1986, a technique called back-propagation was introduced (D. E. Rumelhart, G. E. Hinton, and R. J. Williams "Learning representations by backpropagating errors," J. Nature 323, 533-536, 1986).

R. Ptucha '19 42

Multiclass Loss Functions



- The input image scores highest against cat, but is also somewhat similar to dog.
- How do we assign a loss function?

R. Ptucha '19 47

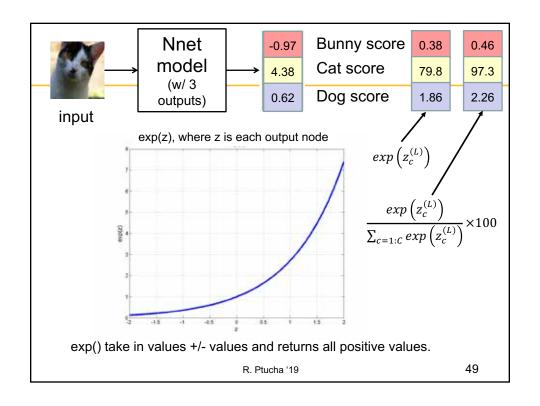
Activation Function of Output Layer

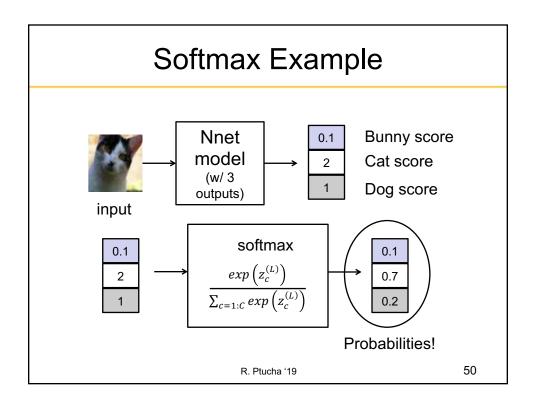
- Sigmoid returns 0 or 1 for each output node.
- · What if you wanted a confidence interval?
- Use a linear activation function for regression: $a^{(l)}=z^{(l)}$
- · Softmax often used for classification:

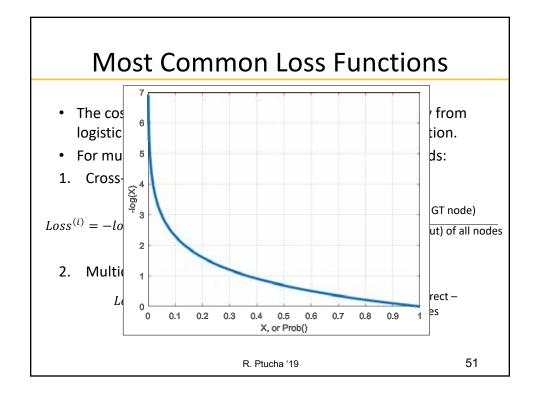
$$a_c^{(L)} = h_\theta(x)_c = g\left(z_c^{(L)}\right) = \frac{exp\left(z_c^{(L)}\right)}{\sum_{c=1:C} exp\left(z_c^{(L)}\right)} \longleftarrow \frac{exp() \text{ of each output nodes}}{\sum_{c=1:C} exp\left(z_c^{(L)}\right)} \longleftarrow \text{ Sum of all output nodes}$$

 Note: Only the output layer activation function changes- all hidden layer nodes activation functions would be the sigmoid/tanh/ReLU function.

R. Ptucha '19 4







Most Common Loss Functions

- The cost function we previously used was a direct copy from logistic regression and works great for binary classification.
- For multi-class, there are two popular data loss methods:
- 1. Cross-entropy loss, which uses softmax:

$$Loss^{(i)} = -log\left(\frac{exp\left(out_{yi}^{(i)}\right)}{\sum_{c=1:C}exp\left(out_{c}^{(i)}\right)}\right) \qquad \text{Loss for } \\ \text{sample } i = \frac{\text{exp(output of GT node)}}{\text{Sum of exp(output) of all nodes}}$$

2. Multiclass SVM Loss (Weston Watkins formulation):

$$Loss^{(i)} = \sum_{j \neq yi} max(0, out_j - out_{yi} + \Delta)$$
 Sum of incorrect – correct classes

R. Ptucha '19

