
1

R. Ptucha ‘19 1

Raymond Ptucha,
Rochester Institute of Technology, USA

Introduction to Deep Learning for
Facial and Gesture Understanding

Part V: RNNs

Tutorial-2
May 14, 2019, 2-6pm

www.nvidia.com/dli

R. Ptucha ‘19 2

Fair Use Agreement
This agreement covers the use of all slides in this document, please read
carefully.

• You may freely use these slides, if:
– You send me an email telling me the conference/venue/company name

in advance, and which slides you wish to use.
– You receive a positive confirmation email back from me.
– My name (R. Ptucha) appears on each slide you use.

(c) Raymond Ptucha, rwpeec@rit.edu

2

R. Ptucha ‘19 3

Agenda

• Part I: Introduction
• Part II: Convolutional Neural Nets
• Part III: Fully Convolutional Nets
• Break
• Part IV: Facial Understanding
• Part V: Recurrent Neural Nets
• Hands-on with NVIDIA DIGITS

R. Ptucha ‘19 5

Recurrent Neural Networks

• Feed forward Artificial Neural Networks
(ANNs) are great at classification, but are
limited at predicting future given the past.

• Need framework that determines output
based upon current and previous inputs.

• Recurrent or Recursive Neural Networks
(RNNs) capture sequential information and
are used in speech recognition, activity
recognition, NLP, weather prediction, etc.

3

R. Ptucha ‘19 6

Adding Recurrence

x s z

x0

s zx1

xn

…

𝑥𝑥 =

𝑥𝑥#
𝑥𝑥$
𝑥𝑥%
⋮
𝑥𝑥'

𝜃𝜃 =

𝜃𝜃#
𝜃𝜃$
𝜃𝜃%
⋮
𝜃𝜃'

𝑧𝑧 = 𝜎𝜎 𝑥𝑥#𝜃𝜃# + 𝑥𝑥$𝜃𝜃$ + …+ 𝑥𝑥'𝜃𝜃' = 𝜎𝜎 -
./#

'

𝑥𝑥.𝜃𝜃.
𝑧𝑧 = 𝜎𝜎 𝜃𝜃0𝑥𝑥

Activation function

xt zts s
ht

xt zts s
ht

ht-1

q0

q1

qn

x s s zh
qhzqxh

q

R. Ptucha ‘19 7

Neural Networks

xt zts s
ht

ht-1

xt

inh0

Wxh

ht=f(inh0)

𝑖𝑖𝑖𝑖3# = 𝑊𝑊53𝑥𝑥6
ℎ6 = 𝑓𝑓 𝑖𝑖𝑖𝑖3#

Where:
• 𝑥𝑥6, is the input values
• 𝑊𝑊53, 𝑖𝑖𝑖𝑖 the weight matrix for

input
• 𝑖𝑖𝑖𝑖3# is the inputs to

activation function
• 𝑓𝑓 is some activation function
• ℎ6 is is the output values

4

R. Ptucha ‘19 8

Neural Networks

xt zts s
ht

ht-1

xt

inh0

Wxh

ht=f(inh0)

iny0

yt=f(iny0)

Why

𝑖𝑖𝑖𝑖3# = 𝑊𝑊53𝑥𝑥6
ℎ6 = 𝑓𝑓 𝑖𝑖𝑖𝑖3#
𝑖𝑖𝑖𝑖;# = 𝑊𝑊3;ℎ6
𝑦𝑦6 = 𝑓𝑓 𝑖𝑖𝑖𝑖;#

Where:
• 𝑥𝑥6 is the input values
• 𝑊𝑊53, 𝑖𝑖𝑖𝑖 the weight matrix for input
• 𝑖𝑖𝑖𝑖3# is the inputs to activation

function
• 𝑓𝑓 is some activation function
• ℎ6 is is the intermediate output

values
• 𝑊𝑊3; is the weight matrix for

intermediate value
• 𝑦𝑦6 is the output values

R. Ptucha ‘19 9

Recurrent Networks

xt zts s
ht

ht-1

xt

inh0

Wxh

ht-1
Whh

ht=f(inh0)

iny0

yt=f(iny0)

Why

𝑖𝑖𝑖𝑖3# = 𝑊𝑊53𝑥𝑥6 +𝑊𝑊33ℎ6=$
ℎ6 = 𝑓𝑓 𝑖𝑖𝑖𝑖3#
𝑖𝑖𝑖𝑖;# = 𝑊𝑊3;ℎ6
𝑦𝑦6 = 𝑓𝑓 𝑖𝑖𝑖𝑖;#

Where:
• 𝑥𝑥6 is the input values
• 𝑊𝑊53, 𝑖𝑖𝑖𝑖 the weight matrix for input
• 𝑖𝑖𝑖𝑖3# is the inputs to activation function
• 𝑓𝑓 is some activation function
• ℎ6, ℎ6=$ are current hidden and

previous hidden values
• 𝑊𝑊53, 𝑊𝑊33 and 𝑊𝑊3; are the weight

matrices for input, hidden and output
stages respectively

• 𝑦𝑦6 is the output values

5

R. Ptucha ‘19 10

Recurrent Networks

xt

inh0

Wxh

Whh

ht=f(inh0)

iny0

yt=f(iny0)

Why

Output
layer

Hidden
layer

Input
layer

xt

ht

Both figures represent the same architecture

xt

inh0

Wxh

Whh

ht=f(inh0)

iny0

yt=f(iny0)

Why

xt+1

inh0Whh

ht=f(inh0)

iny0

yt=f(iny0)

Why

xt+2

inh0

ht=f(inh0)

iny0

yt=f(iny0)

Whyht

xt xt+1 xt+2Wxh Wxh

Whh

ht+1 ht+2

yt yt+1 yt+2

…
ht-1

R. Ptucha ‘19 11

ht

xt

ht ht+1

ht+1 ht+2

ht+2

ht+3

xt+3xt+2xt+1

yt yt+1 yt+2 yt+3

iny0

inh0

t

iny1

inh1

t+1

iny2

inh2

t+2

iny3

inh3

t+3

Output
layer

Hidden
layer

Input
layer

Wxh Wxh Wxh Wxh

Why

Whh Whh Whh

WhyWhy Why

Forward Propagation of Recurrent
Networks

Note: regardless of how many time steps taken, only learning a
single Wxh, Whh, and Why. Each are learned via standard back
propagation.

Whh

‘0’s

6

R. Ptucha ‘19 12

Recurrent Networks
Recurrent Neural Network “neuron”

Long Short Term Memory “neuron”

• Unfortunately, these
vanilla RNNs don’t
always work.

• Can’t store info over
long periods of time.

• Suffer from vanishing
and/or exploding
gradients.

P(next event | previous events)

s

s

ht

zt

xt

ht-1

Cell

Output

R. Ptucha ‘19 13

Recurrent Networks

Donahue et al., 2015

Recurrent Neural Network “neuron” Long Short Term Memory “neuron”

• LSTM’s allow read/write/reset functions to neurons.
• Remember past to predict the future- (over long time periods).
• Can have many hidden neurons per layer and many layers.

s

j j

s

s

Input
Gate

Output
Gate

Input
Node

Forget Gate

ht

ct

xt

ht-1

ct-1

Memory
Cell

s

s

ht

zt

xt

ht-1

Cell

Output

7

R. Ptucha ‘19 14

Recurrent Applications

Donahue, et al., 2015Karpathy, Fei-Fei, 2015

R. Ptucha ‘19 15

Recurrent Applications

Socherr PhD Thesis 2014

Sutskever et al., 2014

Top is input,
rest are
generated

English to French translator

Graves 2014

Predicted

Truth

A B C <EOS>

W X Y Z <EOS>

ZYXW

English Words

French Words

8

R. Ptucha ‘19 16

Many Flavors

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

R. Ptucha ‘19 25

LSTMs

s

j j

s

s

Input
Gate

Output
Gate

Input Node

Forget Gate

ht

ct

xt

ht-1

ct-1

Memory
Cell

9

R. Ptucha ‘19 26

LSTMs
Convert standard neuron into a complex memory cell

𝑖𝑖6 = 𝜎𝜎 𝑊𝑊5.𝑥𝑥6 +𝑊𝑊3.ℎ6=$

𝑜𝑜6 = 𝜎𝜎 𝑊𝑊5?𝑥𝑥6 +𝑊𝑊3?ℎ6=$

𝑓𝑓6 = 𝜎𝜎 𝑊𝑊5@𝑥𝑥6 +𝑊𝑊3@ℎ6=$

𝑔𝑔6 = 𝜙𝜙 𝑊𝑊5C𝑥𝑥6 +𝑊𝑊3Cℎ6=$

With s()=sigmoid activation function and
f()=tanh activation function, xt and the
previous cell output ht-1 calculate:

Input gate:

Output gate:

Forget gate:

Input node:

Calculate a memory cell which is the summation of the previous memory
cell, governed by the forget gate and the input and previous output
governed by independent combinations of the same:

𝑐𝑐6 = 𝑓𝑓6𝑐𝑐6=$ + 𝑖𝑖6𝑔𝑔6

ℎ6 = 𝑜𝑜6𝜙𝜙 𝑐𝑐6

Calculate a new hidden state, governed by the output gate:

Write, read, reset governors:

Real input to memory cell:
𝑔𝑔6 = 𝜙𝜙 𝑊𝑊5C𝑥𝑥6 +𝑊𝑊3Cℎ6=$Input node:

Looks just like our RNN cell!

s

j j

s

s

Input
Gate

Output
Gate

Input
Node

Forget Gate

ht

ct

xt

ht-1

ct-1

Memory
Cell

R. Ptucha ‘19 27

The input node summarizes the input and past
output, which will be governed by the input gate.

𝑖𝑖6 = 𝜎𝜎 𝑊𝑊5.𝑥𝑥6 +𝑊𝑊3.ℎ6=$

𝑜𝑜6 = 𝜎𝜎 𝑊𝑊5?𝑥𝑥6 +𝑊𝑊3?ℎ6=$

𝑓𝑓6 = 𝜎𝜎 𝑊𝑊5@𝑥𝑥6 +𝑊𝑊3@ℎ6=$

𝑔𝑔6 = 𝜙𝜙 𝑊𝑊5C𝑥𝑥6 +𝑊𝑊3Cℎ6=$

With s()=sigmoid activation function
and f()=tanh activation function, xt
and the previous cell output ht-1
calculate:
Input gate:

Output gate:

Forget gate:

Input node:

Calculate a memory cell which is the summation of the previous memory
cell, governed by the forget gate and the input and previous output
governed by independent combinations of the same:

𝑐𝑐6 = 𝑓𝑓6𝑐𝑐6=$ + 𝑖𝑖6𝑔𝑔6

ℎ6 = 𝑜𝑜6𝜙𝜙 𝑐𝑐6

Calculate a new hidden state, governed by the output gate:

s

j j

s

s

Input
Gate

Output
Gate

Input
Node

Forget Gate

ht

ct

xt

ht-1

ct-1

Memory
Cell

10

R. Ptucha ‘19 28

Write: The input gate gives the provision to determine
importance of current input and past hidden state.

𝑖𝑖6 = 𝜎𝜎 𝑊𝑊5.𝑥𝑥6 +𝑊𝑊3.ℎ6=$

𝑜𝑜6 = 𝜎𝜎 𝑊𝑊5?𝑥𝑥6 +𝑊𝑊3?ℎ6=$

𝑓𝑓6 = 𝜎𝜎 𝑊𝑊5@𝑥𝑥6 +𝑊𝑊3@ℎ6=$

𝑔𝑔6 = 𝜙𝜙 𝑊𝑊5C𝑥𝑥6 +𝑊𝑊3Cℎ6=$

With s()=sigmoid activation function
and f()=tanh activation function, xt and
the previous cell output ht-1 calculate:

Input gate:

Output gate:

Forget gate:

Modulation gate:

Calculate a memory cell which is the summation of the previous memory
cell, governed by the forget gate and the input and previous output
governed by independent combinations of the same:

𝑐𝑐6 = 𝑓𝑓6𝑐𝑐6=$ + 𝑖𝑖6𝑔𝑔6

ℎ6 = 𝑜𝑜6𝜙𝜙 𝑐𝑐6

Calculate a new hidden state, governed by the output gate:

s

j j

s

s

Input
Gate

Output
Gate

Input
Node

Forget Gate

ht

ct

xt

ht-1

ct-1

Memory
Cell

R. Ptucha ‘19 29

Read: The output gate determines what parts of the
cell output are necessary for the next time step.

𝑖𝑖6 = 𝜎𝜎 𝑊𝑊5.𝑥𝑥6 +𝑊𝑊3.ℎ6=$

𝑜𝑜6 = 𝜎𝜎 𝑊𝑊5?𝑥𝑥6 +𝑊𝑊3?ℎ6=$

𝑓𝑓6 = 𝜎𝜎 𝑊𝑊5@𝑥𝑥6 +𝑊𝑊3@ℎ6=$

𝑔𝑔6 = 𝜙𝜙 𝑊𝑊5C𝑥𝑥6 +𝑊𝑊3Cℎ6=$

With s()=sigmoid activation function
and f()=tanh activation function, xt and
the previous cell output ht-1 calculate:

Input gate:

Output gate:

Forget gate:

Modulation gate:

Calculate a memory cell which is the summation of the previous memory
cell, governed by the forget gate and the input and previous output
governed by independent combinations of the same:

𝑐𝑐6 = 𝑓𝑓6𝑐𝑐6=$ + 𝑖𝑖6𝑔𝑔6

ℎ6 = 𝑜𝑜6𝜙𝜙 𝑐𝑐6

Calculate a new hidden state, governed by the output gate:

s

j j

s

s

Input
Gate

Output
Gate

Input
Node

Forget Gate

ht

ct

xt

ht-1

ct-1

Memory
Cell

11

R. Ptucha ‘19 30

Reset: The forget gate gives the provision for the
hidden layer to discard or forget the historical data

𝑖𝑖6 = 𝜎𝜎 𝑊𝑊5.𝑥𝑥6 +𝑊𝑊3.ℎ6=$

𝑜𝑜6 = 𝜎𝜎 𝑊𝑊5?𝑥𝑥6 +𝑊𝑊3?ℎ6=$

𝑓𝑓6 = 𝜎𝜎 𝑊𝑊5@𝑥𝑥6 +𝑊𝑊3@ℎ6=$

𝑔𝑔6 = 𝜙𝜙 𝑊𝑊5C𝑥𝑥6 +𝑊𝑊3Cℎ6=$

With s()=sigmoid activation function
and f()=tanh activation function, xt and
the previous cell output ht-1 calculate:

Input gate:

Output gate:

Forget gate:

Modulation gate:

Calculate a memory cell which is the summation of the previous memory
cell, governed by the forget gate and the input and previous output
governed by independent combinations of the same:

𝑐𝑐6 = 𝑓𝑓6𝑐𝑐6=$ + 𝑖𝑖6𝑔𝑔6

ℎ6 = 𝑜𝑜6𝜙𝜙 𝑐𝑐6

Calculate a new hidden state, governed by the output gate:

s

j j

s

s

Input
Gate

Output
Gate

Input
Node

Forget Gate

ht

ct

xt

ht-1

ct-1

Memory
Cell

R. Ptucha ‘19 31

Using LSTMs

• The LSTM memory cells are analogous to
a single neuron.

• As such many hundreds of these memory
cells are used in a layer, each of which
passes its output ht to the next time step,
ht+1.

12

R. Ptucha ‘19 32

Same architecture as RNNs, but middle
neurons are now LSTM memory cells

ht

xt

ht ht+1

ht+1 ht+2

ht+2

ht+3

xt+3xt+2xt+1

yt yt+1 yt+2 yt+3

iny0

inh0

t

iny1

inh1

t+1

iny2

inh2

t+2

iny3

inh3

t+3

Output
layer

Hidden
layer

Input layer

inh0inh0 inh1inh1 inh2inh2 inh3inh3
ct ct+1 ct+2

R. Ptucha ‘19 33

Can do many layers…

ct ct+1 ct+2

ct ct+1 ct+2

xt xt+3xt+2xt+1

yt yt+1 yt+2 yt+3

iny0

t

iny1

t+1

iny2

t+2

iny3

t+3

Output
layer

Input layer

ht

ht ht+1

ht+1 ht+2

ht+2

ht+3

inh0 inh1 inh2 inh3Hidden
layer 1

inh0inh0 inh1inh1 inh2inh2 inh3inh3

ht

ht ht+1

ht+1 ht+2

ht+2

ht+3

inh0 inh1 inh2 inh3Hidden
layer 2

inh0inh0 inh1inh1 inh2inh2 inh3inh3

13

R. Ptucha ‘19 34

Learning Shakespeare

• LSTMs can learn structure and style in the
data.

• Karparthy downloaded all the works of
Shakespeare and concatenated them into
a single (4.4MB) file.

• Train a 3-layer LSTM with 512 hidden
nodes on each layer.

• After we train the network for a few hours
Karpathy obtained samples such as:

R. Ptucha ‘19 35
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

14

R. Ptucha ‘19 36

Learning LaTeX

• The results above suggest that the model is
actually quite good at learning complex syntactic
structures.

• Karpathy and Johnston downloaded the raw Latex
source file (a 16MB file) of a book on algebraic
stacks/geometry and trained a multilayer LSTM.

• Amazingly, the resulting sampled
LaTex almost compiled.

• They had to step in and fix a few issues manually
but then they get plausible looking math:

R. Ptucha ‘19 37
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

15

R. Ptucha ‘19 42

Recurrent Networks for Character
Prediction

‘A’ ‘p’

A’ ‘p’

‘p’

‘p’

‘l’

‘l’

‘e’

‘e’

‘<EOS>’

<start>

ht-1

For this to
work, we need
to represent
characters as
some latent
vector
numerical
representation.

R. Ptucha ‘19 43

Recurrent Networks for Word
Prediction

‘Deep’ ‘learning’

‘Deep’ ‘learning’

‘is’

‘is’

‘really’

‘really’

‘cool’

‘cool’

‘<EOS>’

<start>

ht-1

For this to
work, we need
to represent
words as some
latent vector
numerical
representation.

16

R. Ptucha ‘19 44

Word2vec

• In the simplest form, we can start with a one-hot
encoded vector of all words, and then learn a
model which converts to a lower dimensional
representation.

• Word2vec, glove, and skip-gram are popular
metrics which encode words to a latent vector
representation (~300 dimensions).

• Now we have a way to represent images,
characters, and words as vectors.

R. Ptucha ‘19 45

Sent2vec

• In the English to French translation, we have:

Sutskever et al., NIPS ‘14English sentence

French sentence

…but wait, this point in the RNN is a representation
(sent2vec) of all the words in the English sentence!

• Now we have a way to represent images, characters,
words, and sentences as vectors…can extend to
paragraphs and documents…

17

R. Ptucha ‘19 46

Image Captioning

CNN helps represent an
image as a numeric value.
(image2vec)

RNN takes in a latent representation of an
image, and generates a sequence.

Karpathy & Li, CVPR'15

R. Ptucha ‘19 47X
<start>

ℎ6 = 𝑓𝑓 𝑊𝑊53𝑥𝑥6 +𝑊𝑊33ℎ6=$ht-1

𝑦𝑦6 = 𝑓𝑓 𝑊𝑊3;ℎ6

<word1>

• We may have 50K
words. Instead of
one-hot encoding, we
learn an embedding
for each word. • Glove embedding (300

long vector/word) is
very popular.

• Alternately, can learn
embedding- learn a
matrix which goes from
(50K) one-hot to 300,
ie: 𝑊𝑊.5 ∈ 𝑅𝑅G#H×J##

• Embedding and
unembedding can be
learned or inverses of
one another.

18

R. Ptucha ‘19 48X
<start>

ℎ6 = 𝑓𝑓 𝑊𝑊53𝑥𝑥6 +𝑊𝑊33ℎ6=$ +𝑊𝑊K3𝑣𝑣ht-1

𝑦𝑦6 = 𝑓𝑓 𝑊𝑊3;ℎ6

<word1>

𝑣𝑣

could be
FC6, FC7,
conv5, conv4,
…;
or a
combination
of above

𝑣𝑣

Note: Word is
sampled from
distribution of
word
probabilities

R. Ptucha ‘19 49X
<start>

ℎ#ht-1

𝑦𝑦#

<word1>

𝑣𝑣 <word1>

ℎ$

𝑦𝑦$

<word2>

<word2>

ℎ%

𝑦𝑦%

<word3>

<wordn-1>

ℎ'

𝑦𝑦'

<EOS>

…

Training samples are:
<word1>, <word2>,
…<wordn>, <EOS>

19

R. Ptucha ‘19 50X
<start>

ℎ#ht-1

𝑦𝑦#

<word1>

𝑣𝑣 <word1>

ℎ$

𝑦𝑦$

<word2>

<word2>

ℎ%

𝑦𝑦%

<word3>

<wordn-1>

ℎ'

𝑦𝑦'

<EOS>

…

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁: ℎ#
= 𝑓𝑓 𝑊𝑊53𝑥𝑥6 +𝑊𝑊33ℎ6=$ +𝑊𝑊K3𝑣𝑣

𝐵𝐵𝐵𝐵𝐵𝐵, ℎ6 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒:
= 𝑓𝑓 𝑊𝑊53𝑥𝑥6 +𝑊𝑊33ℎ6=$
= 𝑓𝑓 𝑊𝑊53𝑥𝑥6 +𝑊𝑊33ℎ6=$ +𝑊𝑊K3𝑣𝑣

While word
embedding is 300,
𝑥𝑥 ∈ 𝑅𝑅J## , the
hidden embedding
can be anything,
such as 512

When training
RNN, can also
update weights in
CNN (full end-to-
end) training.

R. Ptucha ‘19 54Karpathy’15

20

R. Ptucha ‘19 56

Venugopalan et al., NAACL 2015

AlexNet 4K FC7

Sa
m

pl
e

ev
er

y
10

th
fr

am
e

Pre-train on alternate caption datasets, fine tune to your dataset

Mean pooling
over f frames 𝑉𝑉 =

1
𝑓𝑓
-
./$

@

𝑣𝑣$. , 𝑣𝑣%. ,⋯ , 𝑣𝑣Y#Z[.

R. Ptucha ‘19 57

Video Captioning

SV2T, Venugopalan, 2015

• Single LSTM for both encode and decode state.
• Two layer LSTM, 1000 hidden units each:

– First LSTM learns video concepts
– Second LSTM concentrates on language

details.

21

R. Ptucha ‘19 58

Video2vec

• We can generically use the same seq2seq
operation for video:

CNN encoding
frame by frame

Output caption

…this point in the RNN is a representation
(video2vec) of all the frames in the video!

R. Ptucha ‘19 59

Video2vec

• We can generically use the same seq2seq
operation for video:

CNN encoding
frame by frame

Output activity/action

…this point in the RNN is a representation
(video2vec) of all the frames in the video!

22

R. Ptucha ‘19 60

C3D
Tran et al. “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015.

• Rather than learn a single vector (e.g. FC7),
introduced a spatio-temporal video feature
representation using deep 3D ConvNets.

• Not the first to propose 3D ConvNets, but first to
exploit deep nets with large supervised datasets.

• Models appearance and motion.
• Showed that:

– 3D ConvNets are better than 2D ConvNets
– Simple architecture with 3×3×3 filters works very well
– Learned features are then passed into simple linear

classifier to give state-of-the-art results

R. Ptucha ‘19 61

2D and 3D Convolution

• 2D conv on a 2D image
results in 2D image

Tran et al., 2015

• 2D conv on a 3D volume
results in 2D image
– Because filter depth

matches volume depth.

• 3D conv on a 3D volume
results in 3D volume
– Preserves spatio-

temporal information.

(will still work with c channels and f frames)
(Similar phenomenon for pooling)

23

R. Ptucha ‘19 62

3×16×128×171

3×16×112×112

augmentation

input

3×3×3×3 3×3×3 3×3×3 3×3×3 3×3×3 3×3×3 3×3×3 3×3×3

1×2×2 2×2×2 2×2×2 2×2×2 2×2×2

Split video into 16-frame clips with 8-frame
overlap
All convolution uses zero pad and stride=1

64
actv. maps

16×112×112

64
actv. maps:
16×56×56

128
actv. maps:
16×56×56

128
actv. maps:
8×28×28

256
actv. maps:
8×28×28

256
actv. maps:
8×28×28

256
actv. maps:
4×14×14

512
actv. maps:
4×14×14

512
actv. maps:
4×14×14

512
actv. maps:

2×7×7

512
actv. maps:

2×7×7

512
actv. maps:

2×7×7

512
actv. maps:

1×4×4

FC
layers
are 4K

Full C3D Architecture (Tran et al. ICCV’15)

Tran et al., 2015

R. Ptucha ‘19 63

3×16×128×171

3×16×112×112

augmentation

input

3×3×3×3 3×3×3 3×3×3 3×3×3 3×3×3 3×3×3 3×3×3 3×3×3

1×2×2 2×2×2 2×2×2 2×2×2 2×2×2

Split video into 8-frame overlap 16-frame clips

64
actv. maps

16×112×112

64
actv. maps:
16×56×56

128
actv. maps:
16×56×56

128
actv. maps:
8×28×28

256
actv. maps:
8×28×28

256
actv. maps:
8×28×28

256
actv. maps:
4×14×14

512
actv. maps:
4×14×14

512
actv. maps:
4×14×14

512
actv. maps:

2×7×7

512
actv. maps:

2×7×7

512
actv. maps:

2×7×7

512
actv. maps:

1×4×4

FC
layers
are 4K

Full C3D Architecture (Tran et al. ICCV’15)

When used as a video2vec feature descriptor, take
output from all fc6 layers of all clips, and average to
get single 4K descriptor of video.

Tran et al., 2015

Pu et al., 2017:

24

R. Ptucha ‘19 64

Inflated Inception v1 for Video (I3D)
Filters and Pooling Increased from 2D to 3D

Quo Vadis Action Recognition: a New Model and the Kinetics Dataset. Carreira and Zisserman,
CVPR 2017, http://openaccess.thecvf.com/content_cvpr_2017/papers/Carreira_Quo_Vadis_Action_CVPR_2017_paper.pdf

Same group who introduced
VGGFace2 at FG’18

R. Ptucha ‘19 65

Thank you!!
Ray Ptucha

rwpeec@rit.edu

https://www.rit.edu/mil

