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Agenda

* Part I: Introduction

» Part Il: Convolutional Neural Nets
« Part lll: Fully Convolutional Nets
* Break

» Part IV: Facial Understanding

* Part V: Recurrent Neural Nets

* Hands-on with NVIDIA DIGITS
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Recurrent Neural Networks

» Feed forward Artificial Neural Networks
(ANNSs) are great at classification, but are
limited at predicting future given the past.

* Need framework that determines output
based upon current and previous inputs.

» Recurrent or Recursive Neural Networks
(RNNSs) capture sequential information and
are used in speech recognition, activity
recognition, NLP, weather prediction, etc.
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Adding Recurrence
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Neural Networks

inpo = Wynxt)

he = f (ingo)
Where:
T * x;,is the input values
* Wy, is the weight matrix for
h=f(iny,) input
inho * iny, is the inputs to
- activation function
We  «  fis some activation function
Xt * h; is is the output values
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Neural Networks

1

ye=H(inyo)

inyo

/

Why,

hf=f ( in,,o)

inpo

A

th

Xt

inpo = (Wynxe)

he = f(ingo)
inyo = Whyht
Yt = f(inyo)

Where:
* x;is the input values
s W, is the weight matrix for input

* inyg is the inputs to activation
function

* f is some activation function

* h; is is the intermediate output
values

* W, is the weight matrix for
intermediate value

* y. is the output values
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Recurrent Networks

1

ye=f(in

yo)

inyo

4

W,

he=f(in

ho)

inpo

A

th

Xt

inpg = Wynxe + Wynhe_1)

he = f(inyo)
inyo = Whyht
yt = f(inyo)

Where:

* x. is the input values

s Wi, is the weight matrix for input

* iny, is the inputs to activation function

* f is some activation function

* h;, hy_, are current hidden and
previous hidden values

* Wyn, Wy and Wy, are the weight
matrices for input, hidden and output
stages respectively

* y.is the output values
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Recurrent Networks

Both figures represent the same architecture
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layer
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Forward Propagation of Recurrent

Networks
Yt Yi+1 Yi+2 Yt+3

OUtPUt inyO inyl inyz iny3
layer

Why Th' Why T ht+1 Why I hts2 Why T hss
. e . ht . hi+1 . hi+2 .
Hidden ‘0's —>{ inxo inpy inp; iNhs
layer Whn Whn Whn Whn

Wxn |t Wah | xes1 Wi [ xes2 Wi [ X3
Input t t+1 t+2 t+3
layer

Note: regardless of how many time steps taken, only learning a
single Wy, Whi, and W;,,. Each are learned via standard back
propagation. R. Ptucha ‘19 11




Recurrent Networks

Recurrent Neural Network “neuron”
P(next event | previous events)

» Unfortunately, these
vanilla RNNs don’t
always work.

z; » Can’t store info over
long periods of time.
 Suffer from vanishing
and/or exploding
gradients.

h;
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Recurrent Networks

Recurrent Neural Network “neuron” Long Short Term Memory “neuron”

Donahue et al., 2015

+ LSTM’s allow read/write/reset functions to neurons.
+ Remember past to predict the future- (over long time periods).
+ Can have many hidden neurons per layer and many layers.

R. Ptucha ‘19 13




Recurrent Applications

“straw” “hat" END

= 3 Wi ¥ F;‘_
f _"VA~ — r / | |Il
=i é O O=

START "straw” “hat”

Karpathy, Fei-Fei, 2015 Donahue, et al., 2015
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Recurrent Applications
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Sutskever et al., 2014
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Many Flavors

one to one one to many many to one many to many many to many
0 OO ] OO HAL
] 4 ] , 4 ] . . 4 ‘. .
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4 4 4 4 4 ‘4 . ) 4 ‘. .
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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LSTMs

Convert standard neuron into a complex memory cell

With o()=sigmoid activation function and

#()=tanh activation function, x; and the
previous cell output hy.; calculate:
Write,_read. reset governors:

he Input gate: iy = o(Wyixy + Wyihi—q)

Output gate: o = a(Wyoxt + Whohe—1)

Forget gate: fr = o(Wypxe + Whrhe—q)

Real input to memory cell:
Input node:  gr = ¢ Wyexy + Whehi—y)

Looks just like our RNN cell!
Calculate a memory cell which is the summation of the previous memory

cell, governed by the forget gate and the input and previous output
governed by independent combinations of the same:

ct = (fece-1 + itge)
Calculate a new hidden state, governed by the output gate:
he = ocp(cr)
R. Ptucha ‘19 26

The input node summarizes the input and past
output, which will be governed by the input gate.

With o()=sigmoid activation function
and ¢()=tanh activation function, x;
and the previous cell output hy.¢
calculate:

he Input gate: iy = a(Wyxe + Wrihe_q)

Output gate: oy = o(Wyoxt + Wiohe—1)

Forget gate: fr = o(Warxe + Whphe—1)

Input node: gr = ¢ Wycxe + Whche_q)

Calculate a memory cell which is the summation of the previous memory
cell, governed by the forget gate and the input and previous output
governed by independent combinations of the ?ame: .

¢t = (feCt—1 + 1tGe)
Calculate a new hidden state, governed by the output gate:

he = o¢p(c)
R. Ptucha ‘19 27




Write: The input gate gives the provision to determine
importance of current input and past hidden state.

With of)=sigmoid activation function
and ¢()=tanh activation function, x; and
the previous cell output h;.s calculate:

he Input gate: iy = a(Wyixe + Wyihe—q)

Output gate: o = a(Wyoxt + Whohe—1)

Forget gate: fr = o(Wypxe + Whrhe—q)

Modulation gate: gr = ¢ Wyexe + Wpche—)

Calculate a memory cell which is the summation of the previous memory
cell, governed by the forget gate and the input and previous output
governed by independent combinations of the same:

ct = (feCe-1 + itge)
Calculate a new hidden state, governed by the output gate:
he = ocp(cr)
R. Ptucha ‘19 28

Read: The output gate determines what parts of the
cell output are necessary for the next time step.

With o()=sigmoid activation function
and ¢()=tanh activation function, x; and
the previous cell output h.; calculate:

he Input gate: iy = a(Wyxe + Wrihe_q)

Output gate: o = a(Wyoxt + Whohe—1)

Forget gate: fr = o(Warxe + Whphe—1)

Modulation gate: gr = ¢ (Wycxe + Wiche_q)

Calculate a memory cell which is the summation of the previous memory
cell, governed by the forget gate and the input and previous output
governed by independent combinations of the ?ame: .

¢t = (feCt—1 + 1tGt)
Calculate a new hidden state, governed by the output gate:

he = o¢p(c)
R. Ptucha “19 29
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Reset: The forget gate gives the provision for the
hidden layer to discard or forget the historical data

With of)=sigmoid activation function
and ¢()=tanh activation function, x; and
the previous cell output h;.s calculate:

Input gate: iy = o(Wyixy + Wyihi—q)

Output gate: o = a(Wyoxt + Whohe—1)

Forget gate: fr = o(Wypxe + Wiphe—1)

Modulation gate: gr = ¢ Wyexe + Wpche—)

Calculate a memory cell which is the summation of the previous memory
cell, governed by the forget gate and the input and previous output

governed by independent combinations of the ?ame: .
ct = (fece-1 + itge)

Calculate a new hidden state, governed by the output gate:

he = o¢p(ct)
R. Ptucha ‘19 30

Using LSTMs

« The LSTM memory cells are analogous to
a single neuron.

« As such many hundreds of these memory
cells are used in a layer, each of which
passes its output h; to the next time step,
ht+1.

R. Ptucha “19 31
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Same architecture as RNNs, but middle
neurons are now LSTM memory cells

Yt Y1 Yis2 Y3
in in in in
Output e # w i
layer
he hes hts2 htss
. ht ht+1 ht+2
Hidden in in in in
ho h1 h2 h3
layer Ct Ct+1 Ct+2
Xt Xe+1 Xe+2 Xt+3
Input layer
t t+1 t+2 t+3
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Can do many layers...
Yt Y1 Yi+2 Yi+3
in in in in
Output 2 i 2 i
layer
h htsa hts2 hts3
— — — —
. h: hia hs2
Hidden in in in in
h h h h
layer 2 0 Ct ! Ces1 2 Cis2 :
! Nt | hesa | hes2 | he.s
) ht ht+1 ht+2
Hidden in in in in
layer 1 ho Ct hi Ct+1 h2 Ct+2 hs
Xt X+l Xt+2 Xt+3
Input layer
t t+1 t+2 t+3
R. Ptucha ‘19 33
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Learning Shakespeare

LSTMs can learn structure and style in the
data.

Karparthy downloaded all the works of
Shakespeare and concatenated them into

a single (4.4MB) file.

Train a 3-layer LSTM with 512 hidden
nodes on each layer.

After we train the network for a few hours
Karpathy obtained samples such as:

R. Ptucha ‘19 34

PARDARUS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep,

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish

The earth and thoughts of many states,

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,

Whose noble souls I°11 have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
R. Ptucha ‘19 35
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Learning LaTeX

» The results above suggest that the model is
actually quite good at learning complex syntactic
structures.

« Karpathy and Johnston downloaded the raw Latex
source file (a 16MB file) of a book on algebraic
stacks/geometry and trained a multilayer LSTM.

* Amazingly, the resulting sampled
LaTex almost compiled.

* They had to step in and fix a few issues manually
but then they get plausible looking math:

R. Ptucha ‘19 36

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Recurrent Networks for Character

Prediction
e

For this to
work, we need
to represent
characters as

some latent
hes —> 1 1 vector
numerical
representation.
R. Ptucha ‘19 42

Recurrent Networks for Word

/\ Predicfion
‘Dee/p’\ ‘learning is’ ‘really’ ‘COQ ‘<EOS>’

hl‘—1 — Y I ——

For this to
work, we need
to represent
words as some
latent vector

numerical
representation.
R. Ptucha ‘19 43
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Word2vec

* In the simplest form, we can start with a one-hot
encoded vector of all words, and then learn a
model which converts to a lower dimensional
representation.

* Word2vec, glove, and skip-gram are popular
metrics which encode words to a latent vector
representation (~300 dimensions).

* Now we have a way to represent images,
characters, and words as vectors.

R. Ptucha ‘19 44

Sent2vec

* In the English to French translation, we have:

French sentence
C 13— 1= = 1— 1 1+ ]
English sentence Sutskever et al., NIPS ‘14
...but wait, this point in the RNN is a representation

(sent2vec) of all the words in the English sentence!

+ Now we have a way to represent images, characters,
words, and sentences as vectors...can extend to
paragraphs and documents...

R. Ptucha ‘19 45
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Image Captioning

RNN takes in a latent representation of an
image, and generates a sequence.

“straw”

Sae]

v CNN,, W

1

CNN helps represent an
image as a humeric value.
(image2vec)

“hat” END

START “straw” “hat”

Yt
Won
’lf

Whn

Wi

Sy

R. Ptucha 19

Karpathy & Li, CVPR'15
46

conv-64 + We may have 50K
e words. Instead of

one-hot encoding, we

learn an embedding

emAZ o each word. - Glove embedding (300
pos). SRR long vector/word) is
conv:236 0 very popular.
come256 « Alternately, can learn
menpoo) e = f(Whyhe) embedding- learn a
conv-512 A matrix which goes from
conv-512 (50K) one-hot to 300,
maxpool ie: I/Vix € R50K><300
conv-512 her P by = f(Wopxe + Whphe—y) | © Embedding and
conv-512 unembedding can be
maxpool T learned or inverses of
—— one another.
FC-4006 <start>
F

- R. Ptucha 19 47
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conv-64
conv-64

conv-128
conv-128

conv-256
conv-256

conv-512
conv-512

conv-512
conv-512

FC-409
FC-4096

Note: Word is
sampled from
distribution of
word
probabilities

<word1>

)

Ve = f(Whyht)
N

her [ he = f(Wynxe + Wipheq @

|

<start>

R. Ptucha 19

v could be
FCe6, FC7,
conv5, conv4,
ora
combination
of above

48

conv-256
conv-256

conv-512
conv-512

conv-512
conv-512

FC-40%
FC-4096

Training samples

<word1>, <word2>,
...<wordn>, <EQS>

are:

<word1>

<word2> <word3>

T

T |

Yo

o

\ 4

hes [ hg

oA 1

A\ 4

hy ha

T |

<EOS>

T

v <start>

<word,.1>

<word1> Urd2>
\,?Aucha 19

49
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image =«

<word1>
\_RAucha 19

conv-64 Hiaies i But, h; can be either:
maxpool 0 = f(Wynx¢ + Wpnhe—1)
= f(Wynxe + Winhe—y + Wy
conv-128 % Wit ) = f (Wxnxe + Wpphe—1 + Wynv)
conv-128 L L £
maxpool <word1> <word2> <word3> , <EOS>
When training
RNN, can also T T 1‘ T
update weights in While word
1 CNN (full end-to- | >° 1 Y2 || embedding is 300,
end) training. 1 1 1 x € R3 the
L L hidden embedding
maxpool can be anything,
conv-512 he1 P hg > >  hy such as 512
conv-512
maxpool
0 i |
FC-4096
rcaoos =V <start> <word2> <word,.>

50
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Sample every 10t frame

Venugopalan et al.,, NAACL 2015
Input Video Convolutional Net Recurrent Net Output

—'Jé}MJ—" I-SIM}—° A
M;_Ls.}m-r—-';u;sm)—» boy

T
~utslrm—°tsIMl—~ is
= LSTM LSIM}_. playing
}
.@.f&h.&f&ﬁb golf

L LSTM || LSTM |— <£0s>

A

i f
AlexNet 4K FC7 ~ Mean pooling |, ZEZ[”i v+, Vhgoe]
over f frames fl__1 b2 7409

Pre-train on alternate caption datasets, fine tune to your dataset
R. Ptucha ‘19 56

Video Captioning

v T
Eriagey) vage Comimdveg 1 ™Y

SV2T, Venugopalan, 2015
« Single LSTM for both encode and decode state.
« Two layer LSTM, 1000 hidden units each:
— First LSTM learns video concepts

— Second LSTM concentrates on language

details.
R. Ptucha “19 57
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Video2vec

« We can generically use the same seq2seq
operation for video:

Output caption

; - - - -

CNN encoding
frame by frame

...this point in the RNN is a representation
(video2vec) of all the frames in the video!

R. Ptucha 19

58

Video2vec

» We can generically use the same seq2seq
operation for video:

Output activity/action

e

CNN encoding
frame by frame

...this point in the RNN is a representation
(video2vec) of all the frames in the video!

R. Ptucha ‘19
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C3D

Tran et al. “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015.

Rather than learn a single vector (e.g. FC7),
introduced a spatio-temporal video feature
representation using deep 3D ConvNets.

Not the first to propose 3D ConvNets, but first to
exploit deep nets with large supervised datasets.
Models appearance and motion.

Showed that:

— 3D ConvNets are better than 2D ConvNets

— Simple architecture with 3x3x3 filters works very well

— Learned features are then passed into simple linear
classifier to give state-of-the-art results

R. Ptucha ‘19 60

H

2D and 3D Convolution

(will still work with ¢ channels and f frames)
(Similar phenomenon for pooling)

) L » 2D conv on a 2D image
' oupue results in 2D image

(@) 20 convolution

e 2D conv on a 3D volume
= ) ‘ results in 2D image

—]| ' | — Because filter depth
—¥: matches volume depth.

+ 3D conv on a 3D volume
'm results in 3D volume
—— L=V — Preserves spatio-

temporal information.
Tran et al., 2015
R. Ptucha ‘19 61
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input Full C3D Architecture (Tran etal. ICCV’15)

3%16x128x171
Split video into 16-frame clips with 8-frame

augmentation
overlap

3x1612x112 All convolution uses zero pad and stride=1

3x3x3x3 3x3x3 3x3x3 3x3x3 3x3x3 3x3x3 3x3x3 3x3x3

Conv2a | Conv3a |[ Conv3b || [ Convea |[ Convib ,' Con-Sa Conva ko 1(7
k 512 k 512 512 40

128 256 256 512

Tran et al., 2015 Ix2x2 $ 2x2x2 x2x2 x2x2 x2%2 \\
FC
layers

64 128 256 256 512 512 512 512 are 4K
ctv. maps: factv. maps:actv. maps:|\actv. maps: actv. mapg: actv. maps: actv. maps

[Convla

actv. maps
16x112x112 [ 16x56x56 | 8x28x28 8x28x28 | 4x14x14 4x14x14\ 2x7x7  2x7x7
64 128 256 512 512
actv. maps: actv. maps: actv. maps: actv. maps: actv. maps:
16x56%56  8x28x28 4x14x14 2x7x7 Txax4
R. Ptucha ‘19 62
input Full C3D Architecture (Tran et al. ICCV’15)

3x16x128x171 Split video into 8-frame overlap 16-frame clips

When used as a video2vec feature descriptor, take
3x16x112x112 outpgt from all fc6 Igyers of gll clips, and average to
get single 4K descriptor of video.

augmentation

3x3x3x3 3x3%x3 3x3x3 3x3x3 3x3x3 3x3x3 3x3x3 3x3x3 \

Conv2a | Conv3a |[ Conv3b |Kl[ Convéa |[ Conveb ,' ConvSa || ConvSb fe6 || fc7 | |3
128 256 256 ‘* 512 H| 512 4096] |4096| [

Tl tal., 2015
reneta 1x2x2 2x2x2 2x2x2 IxDx2 I x2x2 \\
\ FC
layers

64 128 256 256 512 512 512 512 are 4K
ctv. maps: factv. maps:actv. maps) actv. maps: actv. mapg actv. maps: actv. maps)

512 512

[ Convia

actv. maps
16x112x112 [ 16x56x56 | 8x28x28 8x28x28 | 4x14x14  4x14x14) 2x7x7 2x7x7
64 128 256 512 512
actv. maps: actv. maps: actv. maps: actv. maps: actv. maps:
16x56x56  8x28x28 Ax14x14 2x7x7 1x4x4
Puetal., 2017:
The dimensions for features extracted from pool2, pool3, poold and poolS are 28 x 28 x N 128
4 % 14 x N/A x 256, 7Tx7x N/8 x512and 4 x 4 x N/16 x 512, respectively. N is the
number of frames of input video. After the convolutional transformation, the dimensions will be all
I x4 x N/16 x 512,
03

K. Fwcna 19y
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Inflated Inception v1 for Video (I3D)

Filters and Pooling Increased from 2D to 3D

Inflated Inception-V1 Inception Module (inc.)

Rec Foia Rec Fla
IRERE] naza
_ s R
O R - R
_— . ‘\
Rec. Foid )
217575 /
- ‘v g@ - g

'hl-':

Rec. Feld Rec Flod
Se219n 79 539 59

:‘_: .ﬂ%‘i( - —-@}I. ~Predictions

Same group who introduced
VGGFace2 at FG'18

Quo Vadis Action Recognition: a New Model and the Kinetics Dataset. Carreira and Zisserman,

CVPR 2017, hitp//op

NaCC hecvi.comyconten pr_2017/pap: a a_Quo Vadis Action R 20 paper.pd
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Thank you!!

Ray Ptucha
rwpeec@rit.edu

https://www.rit.edu/mil
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