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Fair Use Agreement
This agreement covers the use of all slides in this document, please read 
carefully. 

• You may freely use these slides, if:
– You send me an email telling me the conference/venue/company name 

in advance, and which slides you wish to use.
– You receive a positive confirmation email back from me.
– My name (R. Ptucha) appears on each slide you use.

(c) Raymond Ptucha, rwpeec@rit.edu
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Agenda

• Part I: Introduction
• Part II: Convolutional Neural Nets
• Part III: Fully Convolutional Nets
• Break
• Part IV: Facial Understanding
• Part V: Recurrent Neural Nets
• Hands-on with NVIDIA DIGITS
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Recurrent Neural Networks

• Feed forward Artificial Neural Networks 
(ANNs) are great at classification, but are 
limited at predicting future given the past.

• Need framework that determines output 
based upon current and previous inputs.

• Recurrent or Recursive Neural Networks 
(RNNs) capture sequential information and 
are used in speech recognition, activity 
recognition, NLP, weather prediction, etc. 
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Neural Networks

xt zts s
ht

ht-1

xt

inh0

Wxh

ht=f(inh0)

𝑖𝑖𝑖𝑖3# = 𝑊𝑊53𝑥𝑥6
ℎ6 = 𝑓𝑓 𝑖𝑖𝑖𝑖3#

Where: 
• 𝑥𝑥6, is the input values
• 𝑊𝑊53, 𝑖𝑖𝑖𝑖 the weight matrix for 

input
• 𝑖𝑖𝑖𝑖3# is the inputs to 

activation function
• 𝑓𝑓 is some activation function
• ℎ6 is is the output values
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Neural Networks

xt zts s
ht

ht-1

xt

inh0

Wxh

ht=f(inh0)

iny0

yt=f(iny0)

Why

𝑖𝑖𝑖𝑖3# = 𝑊𝑊53𝑥𝑥6
ℎ6 = 𝑓𝑓 𝑖𝑖𝑖𝑖3#
𝑖𝑖𝑖𝑖;# = 𝑊𝑊3;ℎ6
𝑦𝑦6 = 𝑓𝑓 𝑖𝑖𝑖𝑖;#

Where: 
• 𝑥𝑥6 is the input values
• 𝑊𝑊53, 𝑖𝑖𝑖𝑖 the weight matrix for input
• 𝑖𝑖𝑖𝑖3# is the inputs to activation 

function
• 𝑓𝑓 is some activation function
• ℎ6 is is the intermediate output 

values
• 𝑊𝑊3; is the weight matrix for 

intermediate value
• 𝑦𝑦6 is the output values
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Recurrent Networks

xt zts s
ht

ht-1

xt

inh0

Wxh

ht-1
Whh

ht=f(inh0)

iny0

yt=f(iny0)

Why

𝑖𝑖𝑖𝑖3# = 𝑊𝑊53𝑥𝑥6 +𝑊𝑊33ℎ6=$
ℎ6 = 𝑓𝑓 𝑖𝑖𝑖𝑖3#
𝑖𝑖𝑖𝑖;# = 𝑊𝑊3;ℎ6
𝑦𝑦6 = 𝑓𝑓 𝑖𝑖𝑖𝑖;#

Where: 
• 𝑥𝑥6 is the input values
• 𝑊𝑊53, 𝑖𝑖𝑖𝑖 the weight matrix for input
• 𝑖𝑖𝑖𝑖3# is the inputs to activation function
• 𝑓𝑓 is some activation function
• ℎ6, ℎ6=$ are current hidden and 

previous hidden values
• 𝑊𝑊53, 𝑊𝑊33 and 𝑊𝑊3; are the weight 

matrices for input, hidden and output 
stages respectively

• 𝑦𝑦6 is the output values



5

R. Ptucha ‘19 10

Recurrent Networks

xt
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Wxh
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Output 
layer

Hidden 
layer
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layer

xt
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Both figures represent the same architecture
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ht

xt

ht ht+1

ht+1 ht+2

ht+2

ht+3

xt+3xt+2xt+1

yt yt+1 yt+2 yt+3

iny0

inh0

t

iny1

inh1

t+1

iny2

inh2

t+2

iny3

inh3

t+3

Output 
layer

Hidden 
layer

Input 
layer

Wxh Wxh Wxh Wxh

Why

Whh Whh Whh

WhyWhy Why

Forward Propagation of Recurrent 
Networks

Note: regardless of how many time steps taken, only learning a 
single Wxh, Whh, and Why.  Each are learned via standard back 
propagation.

Whh

‘0’s
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Recurrent Networks
Recurrent Neural Network “neuron”

Long Short Term Memory “neuron”

• Unfortunately, these 
vanilla RNNs don’t 
always work.

• Can’t store info over 
long periods of time.

• Suffer from vanishing 
and/or exploding 
gradients.

P(next event | previous events)

s

s

ht

zt

xt

ht-1

Cell

Output
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Recurrent Networks

Donahue et al., 2015

Recurrent Neural Network “neuron” Long Short Term Memory “neuron”

• LSTM’s allow read/write/reset functions to neurons.
• Remember past to predict the future- (over long time periods).
• Can have many hidden neurons per layer and many layers.
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Recurrent Applications

Donahue, et al., 2015Karpathy, Fei-Fei, 2015
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Recurrent Applications

Socherr PhD Thesis 2014

Sutskever et al., 2014

Top is input, 
rest are 
generated

English to French translator

Graves 2014

Predicted

Truth

A B C <EOS>

W X Y Z <EOS>

ZYXW

English Words

French Words
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Many Flavors

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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LSTMs 
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LSTMs
Convert standard neuron into a complex memory cell 

𝑖𝑖6 = 𝜎𝜎 𝑊𝑊5.𝑥𝑥6 +𝑊𝑊3.ℎ6=$

𝑜𝑜6 = 𝜎𝜎 𝑊𝑊5?𝑥𝑥6 +𝑊𝑊3?ℎ6=$

𝑓𝑓6 = 𝜎𝜎 𝑊𝑊5@𝑥𝑥6 +𝑊𝑊3@ℎ6=$

𝑔𝑔6 = 𝜙𝜙 𝑊𝑊5C𝑥𝑥6 +𝑊𝑊3Cℎ6=$

With s()=sigmoid activation function and  
f()=tanh activation function, xt and the 
previous cell output ht-1 calculate:

Input gate:

Output gate:

Forget gate:

Input node:

Calculate a memory cell which is the summation of the previous memory 
cell, governed by the forget gate and the input and previous output 
governed by independent combinations of the same:

𝑐𝑐6 = 𝑓𝑓6𝑐𝑐6=$ + 𝑖𝑖6𝑔𝑔6

ℎ6 = 𝑜𝑜6𝜙𝜙 𝑐𝑐6

Calculate a new hidden state, governed by the output gate:

Write,  read, reset governors:

Real input to memory cell:
𝑔𝑔6 = 𝜙𝜙 𝑊𝑊5C𝑥𝑥6 +𝑊𝑊3Cℎ6=$Input node:

Looks just like our RNN cell!

s

j j

s

s

Input 
Gate

Output 
Gate

Input 
Node
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ht

ct
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Memory 
Cell
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The input node summarizes the input and past 
output, which will be governed by the input gate. 

𝑖𝑖6 = 𝜎𝜎 𝑊𝑊5.𝑥𝑥6 +𝑊𝑊3.ℎ6=$

𝑜𝑜6 = 𝜎𝜎 𝑊𝑊5?𝑥𝑥6 +𝑊𝑊3?ℎ6=$

𝑓𝑓6 = 𝜎𝜎 𝑊𝑊5@𝑥𝑥6 +𝑊𝑊3@ℎ6=$

𝑔𝑔6 = 𝜙𝜙 𝑊𝑊5C𝑥𝑥6 +𝑊𝑊3Cℎ6=$

With s()=sigmoid activation function 
and  f()=tanh activation function, xt
and the previous cell output ht-1
calculate:
Input gate:

Output gate:

Forget gate:

Input node:

Calculate a memory cell which is the summation of the previous memory 
cell, governed by the forget gate and the input and previous output 
governed by independent combinations of the same:

𝑐𝑐6 = 𝑓𝑓6𝑐𝑐6=$ + 𝑖𝑖6𝑔𝑔6

ℎ6 = 𝑜𝑜6𝜙𝜙 𝑐𝑐6

Calculate a new hidden state, governed by the output gate:

s

j j

s

s

Input 
Gate

Output 
Gate

Input 
Node

Forget Gate

ht

ct

xt

ht-1

ct-1

Memory 
Cell



10

R. Ptucha ‘19 28

Write: The input gate gives the provision to determine 
importance of current input and past hidden state.

𝑖𝑖6 = 𝜎𝜎 𝑊𝑊5.𝑥𝑥6 +𝑊𝑊3.ℎ6=$

𝑜𝑜6 = 𝜎𝜎 𝑊𝑊5?𝑥𝑥6 +𝑊𝑊3?ℎ6=$

𝑓𝑓6 = 𝜎𝜎 𝑊𝑊5@𝑥𝑥6 +𝑊𝑊3@ℎ6=$

𝑔𝑔6 = 𝜙𝜙 𝑊𝑊5C𝑥𝑥6 +𝑊𝑊3Cℎ6=$

With s()=sigmoid activation function 
and  f()=tanh activation function, xt and 
the previous cell output ht-1 calculate:

Input gate:

Output gate:

Forget gate:

Modulation gate:

Calculate a memory cell which is the summation of the previous memory 
cell, governed by the forget gate and the input and previous output 
governed by independent combinations of the same:

𝑐𝑐6 = 𝑓𝑓6𝑐𝑐6=$ + 𝑖𝑖6𝑔𝑔6

ℎ6 = 𝑜𝑜6𝜙𝜙 𝑐𝑐6

Calculate a new hidden state, governed by the output gate:
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Read: The output gate determines what parts of the 
cell output are necessary for the next time step.

𝑖𝑖6 = 𝜎𝜎 𝑊𝑊5.𝑥𝑥6 +𝑊𝑊3.ℎ6=$

𝑜𝑜6 = 𝜎𝜎 𝑊𝑊5?𝑥𝑥6 +𝑊𝑊3?ℎ6=$

𝑓𝑓6 = 𝜎𝜎 𝑊𝑊5@𝑥𝑥6 +𝑊𝑊3@ℎ6=$

𝑔𝑔6 = 𝜙𝜙 𝑊𝑊5C𝑥𝑥6 +𝑊𝑊3Cℎ6=$

With s()=sigmoid activation function 
and  f()=tanh activation function, xt and 
the previous cell output ht-1 calculate:

Input gate:

Output gate:

Forget gate:

Modulation gate:

Calculate a memory cell which is the summation of the previous memory 
cell, governed by the forget gate and the input and previous output 
governed by independent combinations of the same:

𝑐𝑐6 = 𝑓𝑓6𝑐𝑐6=$ + 𝑖𝑖6𝑔𝑔6

ℎ6 = 𝑜𝑜6𝜙𝜙 𝑐𝑐6

Calculate a new hidden state, governed by the output gate:

s

j j

s

s

Input 
Gate

Output 
Gate

Input 
Node

Forget Gate

ht

ct

xt

ht-1

ct-1
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Reset: The forget gate gives the provision for the 
hidden layer to discard or forget the historical data

𝑖𝑖6 = 𝜎𝜎 𝑊𝑊5.𝑥𝑥6 +𝑊𝑊3.ℎ6=$

𝑜𝑜6 = 𝜎𝜎 𝑊𝑊5?𝑥𝑥6 +𝑊𝑊3?ℎ6=$

𝑓𝑓6 = 𝜎𝜎 𝑊𝑊5@𝑥𝑥6 +𝑊𝑊3@ℎ6=$

𝑔𝑔6 = 𝜙𝜙 𝑊𝑊5C𝑥𝑥6 +𝑊𝑊3Cℎ6=$

With s()=sigmoid activation function 
and  f()=tanh activation function, xt and 
the previous cell output ht-1 calculate:

Input gate:

Output gate:

Forget gate:

Modulation gate:

Calculate a memory cell which is the summation of the previous memory 
cell, governed by the forget gate and the input and previous output 
governed by independent combinations of the same:

𝑐𝑐6 = 𝑓𝑓6𝑐𝑐6=$ + 𝑖𝑖6𝑔𝑔6

ℎ6 = 𝑜𝑜6𝜙𝜙 𝑐𝑐6

Calculate a new hidden state, governed by the output gate:
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ht
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Using LSTMs

• The LSTM memory cells are analogous to 
a single neuron.

• As such many hundreds of these memory 
cells are used in a layer, each of which 
passes its output ht to the next time step, 
ht+1.
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Same architecture as RNNs, but middle 
neurons are now LSTM memory cells

ht

xt
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ht+1 ht+2
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Can do many layers…

ct ct+1 ct+2

ct ct+1 ct+2

xt xt+3xt+2xt+1

yt yt+1 yt+2 yt+3

iny0
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inh0 inh1 inh2 inh3Hidden 
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ht+3

inh0 inh1 inh2 inh3Hidden 
layer 2

inh0inh0 inh1inh1 inh2inh2 inh3inh3
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Learning Shakespeare

• LSTMs can learn structure and style in the 
data. 

• Karparthy downloaded all the works of 
Shakespeare and concatenated them into 
a single (4.4MB) file. 

• Train a 3-layer LSTM with 512 hidden 
nodes on each layer. 

• After we train the network for a few hours 
Karpathy obtained samples such as:

R. Ptucha ‘19 35
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Learning LaTeX

• The results above suggest that the model is 
actually quite good at learning complex syntactic 
structures. 

• Karpathy and Johnston downloaded the raw Latex 
source file (a 16MB file) of a book on algebraic 
stacks/geometry and trained a multilayer LSTM. 

• Amazingly, the resulting sampled 
LaTex almost compiled. 

• They had to step in and fix a few issues manually 
but then they get plausible looking math:

R. Ptucha ‘19 37
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Recurrent Networks for Character 
Prediction

‘A’ ‘p’

A’ ‘p’

‘p’

‘p’

‘l’

‘l’

‘e’

‘e’

‘<EOS>’

<start>

ht-1

For this to 
work, we need 
to represent 
characters as 
some latent 
vector 
numerical 
representation.
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Recurrent Networks for Word 
Prediction

‘Deep’ ‘learning’

‘Deep’ ‘learning’

‘is’

‘is’

‘really’

‘really’

‘cool’

‘cool’

‘<EOS>’

<start>

ht-1

For this to 
work, we need 
to represent 
words as some 
latent vector 
numerical 
representation.
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Word2vec

• In the simplest form, we can start with a one-hot 
encoded vector of all words, and then learn a 
model which converts to a lower dimensional 
representation.

• Word2vec, glove, and skip-gram are popular 
metrics which encode words to a latent vector 
representation (~300 dimensions).

• Now we have a way to represent images, 
characters, and words as vectors.

R. Ptucha ‘19 45

Sent2vec

• In the English to French translation, we have:

Sutskever et al., NIPS ‘14English sentence

French sentence

…but wait, this point in the RNN is a representation 
(sent2vec) of all the words in the English sentence!

• Now we have a way to represent images, characters, 
words, and sentences as vectors…can extend to 
paragraphs and documents…



17

R. Ptucha ‘19 46

Image Captioning

CNN helps represent an 
image as a numeric value. 
(image2vec)

RNN takes in a latent representation of an 
image, and generates a sequence.

Karpathy & Li, CVPR'15

R. Ptucha ‘19 47X
<start>

ℎ6 = 𝑓𝑓 𝑊𝑊53𝑥𝑥6 +𝑊𝑊33ℎ6=$ht-1

𝑦𝑦6 = 𝑓𝑓 𝑊𝑊3;ℎ6

<word1>

• We may have 50K 
words.  Instead of 
one-hot encoding, we 
learn an embedding 
for each word. • Glove embedding (300 

long vector/word) is 
very popular.

• Alternately, can learn 
embedding- learn a 
matrix which goes from 
(50K) one-hot to 300, 
ie: 𝑊𝑊.5 ∈ 𝑅𝑅G#H×J##

• Embedding and 
unembedding can be 
learned or inverses of 
one another.
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<start>

ℎ6 = 𝑓𝑓 𝑊𝑊53𝑥𝑥6 +𝑊𝑊33ℎ6=$ +𝑊𝑊K3𝑣𝑣ht-1

𝑦𝑦6 = 𝑓𝑓 𝑊𝑊3;ℎ6

<word1>

𝑣𝑣

could be 
FC6, FC7, 
conv5, conv4, 
…; 
or a 
combination 
of above

𝑣𝑣

Note: Word is 
sampled from 
distribution of 
word 
probabilities
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<start>

ℎ#ht-1

𝑦𝑦#

<word1>

𝑣𝑣 <word1>

ℎ$

𝑦𝑦$

<word2>

<word2>

ℎ%

𝑦𝑦%

<word3>

<wordn-1>

ℎ'

𝑦𝑦'

<EOS>

…

Training samples are: 
<word1>, <word2>, 
…<wordn>, <EOS>
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<start>

ℎ#ht-1

𝑦𝑦#

<word1>

𝑣𝑣 <word1>

ℎ$

𝑦𝑦$

<word2>

<word2>

ℎ%

𝑦𝑦%

<word3>

<wordn-1>

ℎ'

𝑦𝑦'

<EOS>

…

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁: ℎ#
= 𝑓𝑓 𝑊𝑊53𝑥𝑥6 +𝑊𝑊33ℎ6=$ +𝑊𝑊K3𝑣𝑣

𝐵𝐵𝐵𝐵𝐵𝐵, ℎ6 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒:
= 𝑓𝑓 𝑊𝑊53𝑥𝑥6 +𝑊𝑊33ℎ6=$
= 𝑓𝑓 𝑊𝑊53𝑥𝑥6 +𝑊𝑊33ℎ6=$ +𝑊𝑊K3𝑣𝑣

While word 
embedding is 300, 
𝑥𝑥 ∈ 𝑅𝑅J## , the 
hidden embedding 
can be anything, 
such as 512

When training 
RNN, can also 
update weights in 
CNN (full end-to-
end) training.

R. Ptucha ‘19 54Karpathy’15



20

R. Ptucha ‘19 56

Venugopalan et al., NAACL 2015

AlexNet 4K FC7

Sa
m

pl
e 

ev
er

y 
10

th
fr

am
e

Pre-train on alternate caption datasets, fine tune to your dataset

Mean pooling
over f frames 𝑉𝑉 =

1
𝑓𝑓
-
./$

@

𝑣𝑣$. , 𝑣𝑣%. ,⋯ , 𝑣𝑣Y#Z[.
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Video Captioning

SV2T, Venugopalan, 2015

• Single LSTM for both encode and decode state.
• Two layer LSTM, 1000 hidden units each:

– First LSTM learns video concepts
– Second LSTM concentrates on language 

details.
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Video2vec

• We can generically use the same seq2seq 
operation for video:

CNN encoding 
frame by frame

Output caption

…this point in the RNN is a representation 
(video2vec) of all the frames in the video!
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Video2vec

• We can generically use the same seq2seq 
operation for video:

CNN encoding 
frame by frame

Output activity/action

…this point in the RNN is a representation 
(video2vec) of all the frames in the video!
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C3D
Tran et al. “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015.

• Rather than learn a single vector (e.g. FC7), 
introduced a spatio-temporal video feature 
representation using deep 3D ConvNets.

• Not the first to propose 3D ConvNets, but first to 
exploit deep nets with large supervised datasets.

• Models appearance and motion.
• Showed that:

– 3D ConvNets are better than 2D ConvNets
– Simple architecture with 3×3×3 filters works very well
– Learned features are then passed into simple linear 

classifier to give state-of-the-art results
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2D and 3D Convolution

• 2D conv on a 2D image 
results in 2D image

Tran et al., 2015

• 2D conv on a 3D volume 
results in 2D image
– Because filter depth 

matches volume depth.

• 3D conv on a 3D volume 
results in 3D volume
– Preserves spatio-

temporal information.

(will still work with c channels and f frames)
(Similar phenomenon for pooling)
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3×16×128×171

3×16×112×112

augmentation

input

3×3×3×3 3×3×3 3×3×3 3×3×3 3×3×3 3×3×3 3×3×3 3×3×3

1×2×2 2×2×2 2×2×2 2×2×2 2×2×2

Split video into 16-frame clips with 8-frame 
overlap 
All convolution uses zero pad and stride=1

64 
actv. maps

16×112×112

64 
actv. maps:
16×56×56

128 
actv. maps:
16×56×56

128 
actv. maps:
8×28×28

256
actv. maps:
8×28×28

256
actv. maps:
8×28×28

256
actv. maps:
4×14×14

512
actv. maps:
4×14×14

512
actv. maps:
4×14×14

512
actv. maps:

2×7×7

512
actv. maps:

2×7×7

512
actv. maps:

2×7×7

512
actv. maps:

1×4×4

FC 
layers 
are 4K

Full C3D Architecture   (Tran et al. ICCV’15)

Tran et al., 2015
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3×16×128×171

3×16×112×112

augmentation

input

3×3×3×3 3×3×3 3×3×3 3×3×3 3×3×3 3×3×3 3×3×3 3×3×3

1×2×2 2×2×2 2×2×2 2×2×2 2×2×2

Split video into 8-frame overlap 16-frame clips

64 
actv. maps

16×112×112

64 
actv. maps:
16×56×56

128 
actv. maps:
16×56×56

128 
actv. maps:
8×28×28

256
actv. maps:
8×28×28

256
actv. maps:
8×28×28

256
actv. maps:
4×14×14

512
actv. maps:
4×14×14

512
actv. maps:
4×14×14

512
actv. maps:

2×7×7

512
actv. maps:

2×7×7

512
actv. maps:

2×7×7

512
actv. maps:

1×4×4

FC 
layers 
are 4K

Full C3D Architecture (Tran et al. ICCV’15)

When used as a video2vec feature descriptor, take 
output from all fc6 layers of all clips, and average to 
get single 4K descriptor of video.

Tran et al., 2015

Pu et al., 2017:
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Inflated Inception v1 for Video (I3D)
Filters and Pooling Increased from 2D to 3D

Quo Vadis Action Recognition: a New Model and the Kinetics Dataset. Carreira and Zisserman,
CVPR 2017, http://openaccess.thecvf.com/content_cvpr_2017/papers/Carreira_Quo_Vadis_Action_CVPR_2017_paper.pdf

Same group who introduced 
VGGFace2 at FG’18
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Thank you!!
Ray Ptucha

rwpeec@rit.edu

https://www.rit.edu/mil 


